
DataScience@SMU

Using Machine Learning to Identify 
Non-Inclusive Language in the 

Library Catalog

Hollie Gardner & Ryan Kinney
Advisor: Nedelina Teneva, PhD

1



DataScience@SMU

Team Members
2

Hollie Gardner
MSDS Dec ‘22

Ryan Kinney
MSDS May '23

Dr. Nedelina Teneva
Advisor



DataScience@SMU

Content Disclosure

This project addresses harmful language that 
some audience members may find difficult to 
discuss. Language in this presentation has not 
been fully censored.
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Microaggressions 

• "Everyday, subtle, intentional –
and oftentimes unintentional –
interactions or behaviors that 
communicate some sort of 
bias toward historically 
marginalized groups"2

• “Death by a Thousand Cuts”1

4DataScience@SMU



DataScience@SMU

Microaggressions

Impact:
• Lower GPA or researcher 

productivity4
• Reduction in retention and 

graduation rates4
• Negative impacts to mental 

and physical health4,5,6
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In the Catalog

• Presence of harmful and non-
inclusive language

• Former Student: Interruption to 
productivity
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In the Catalog

Where did it come from?
• Historical language usage
• Rules of cataloging
• Globally shared records
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Problem:
Libraries should be inclusive to all groups and 
should not create harm to students and 
researchers from historically marginalized 
groups and this isn't always happening.

Solution:
Libraries need a proactive way to identify and 
remove harmful and non-inclusive language
from their millions of catalog records.
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Data: Library Catalog
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Data: 
Bibliographic 
Record, 
Public View
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Data: 
Bibliographic 
Record,
Source View

11



DataScience@SMU

Data: Selected MARC Fields
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Label Field Subfield
bibid 035 a
Title 245 a
Publication Date 260 c
Description 520 a
Topical Subject Terms 650 a
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Methods: Data Acquisition
1. Obtained permission from Dean of Libraries and 
Ex Libris company

2. Exported 30 .tr.gz files from Alma ILS to Box: 11 hours

3. Added files to SMU’s high performance computer

4. Decompressed into 19.8GB of XML files

5. XML Parsing with ElemenTree XML API 
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Methods: Preprocessing
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Remove punctuation

Change text case to lowercase

Tokenization

Stop word removal

Lemmatization
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Methods: EDA
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Field Available 
Values

Percent of 
Missing

bibid 5,475,642 0.11%
Title 5,475,631 0.11%
Publication Date 2,291,871 58.19%
Description 721,454 86.84%
Topical Term Subject 3,022,612 44.86%



DataScience@SMU

Methods: EDA
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Methods: EDA
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Methods: Detoxify Model

• Developed by Laura Hanu, Unitary AI
• Primary model used to identify 

toxic language in the SMU catalog.
• Trained on Jigsaw Toxic Comment 

Classification Challenge Dataset.
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Results: Top Ten Titles

19

bibid Original Title Toxicity Score

(OCoLC)1110021888 Witches, Sl*ts, Feminists : 0.9952282

(CKB)4100000008484946 ¬øEs tu jefe un gilipollas?. 0.9951066

(OCoLC)ocm34699730 La parra, la perra y la porra / 0.9943474

(OCoLC)760279912 Witches, wife beaters, and w***** : 0.9937238

(OCoLC)ocn708243813 Witches, wife beaters, and w*****: 0.9937238

(YBPDDA)ebc869075 Why are f****ts so afraid of f****ts? : 0.99368894

(OCoLC)ocn232648188 Duck, you sucker 0.9931779

(OCoLC)ocm30835997 Wild Dick, the Indian slayer ... 0.992767

(OCoLC)ocn953830144 Stupid f***ing bird : 0.99224806

(MiAaPQ)EBC869075 Why are f****ts so afraid of f****ts? 0.992063
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Results: Top Five Descriptions
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bibid Original Description Toxicity 
Score

(CKB)371000000042
0489

Do you ever find yourself thinking, how could you be so s*****, you look f**, or you're a h******* mother? 
Are you afraid people will find out you've fooled them into thinking you're competent? If you're guilty of 
expressing these types of discouraging messages, then you have a b**** in your head. This self-critical 
behavior can wreak havoc with your life-it can keep you from getting the love you want, the raise you deserve, 
or even a good night's sleep.Dr. Plumez began to notice a pattern with her patients being too hard on 
themselves. She found that gentler approaches didn't work, but when s...

0.98363435

(CKB)100000000038
0783

Praise for Hoovers bestseller How to Work for an Idiot: ‚Anyone who has to work should read How to Work for 
an Idiot.‚ USA Today ‚Dr. Hoover recommends admitting that you are powerless over the jerks in your life. 
Otherwise, harboring all that resentment is like drinking a cup of poison and waiting for the jerk to d**‚...

0.9819403

(YBPDDA)ebc11771
99

Uncrossable rivers! Hospitable nomads! Rabid dogs! Marijuana fields! Hailstone flashfloods! Maidens on 
horseback! Underpants wrestling! Toxic mountain-top lakes! S***** westerners! And the mountain-biking - so 
much biking you’re a*** will hurt just reading it. This is what happens when two young i***** set out on a 
gonzo ride across the wilds of Mongolia.

0.98072183

(OCoLC)ocm371150
33

Sleuth Hap Collins and his black sidekick go after a gang of gay-bashers. The gang makes videotapes as they 
r***, t****** and m****** homosexuals. The setting is Texas.

0.9784098

(TxDaM)3791072-
smudb

"A g***b*** directed by the girl getting b*****. A h**** wrestler breaking into a teammate's locker to 
j*** o**. Two f*** in love drinking 40's and f****** on a rooftop. A burlesque start getting seduced by her 
real life girlfriend. A p*** star pour milk all over her h****. Yes, the queer world is as hard to define as it is to 
ignore--and these foxes are here to give you a VIP pass to the whole scene.

0.9650895
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Results

• 1 in 3000 titles and descriptions scored 
above a .75.

• 73 out of the top 100 English titles 
were truly harmful.*
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Discussion
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• Identified most harmful and 
non-inclusive catalog 
records.

• Biggest challenge 
was figuring out how to 
work with an unlabeled set 
of data.
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Discussion
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• Nuances in defining 
what language is harmful 
and non-inclusive.

• Not only an SMU 
problem. Other academic 
libraries can perform a 
similar evaluation on 
their catalog.
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Ethics
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• Evolution of Language
• Trauma in Remediation 

Process
• Censorship
• Future Research Needs
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Conclusions
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• Strategic Goal: Creating 
equitable and inclusive 
spaces

• Finding the Needle in the 
Haystack: 

• Harmful & non-inclusive text 
exists in catalogs

• Machine learning tools can 
help

• Opportunities
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Questions
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